The Roles of Caffeine and tACS

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print

ABSTRACT

The modulatory effects of non-invasive brain stimulation (NIBS) are highly variable between subjects. This variability may be due to uncontrolled caffeine consumption and circadian rhythms. Therefore, here we studied if caffeine consumption, systemically available caffeine measured in saliva, and daytime have effects on the excitability and plasticity of the motor cortex. Since both, time of the day and caffeine may mediate their effects via cortisol, we also quantified corticosteroids in saliva. Experiment 1 was performed in caffeine-naïve participants (n = 30) and compared the effects of PAS or tACS with different stimulation intensities on the motor cortex with or without caffeine 200 mg administered in a double-blind fashion. Experiment 2 was performed in regular caffeine consumers (n = 30) and compared the influence of time of day on the effects of tACS (true or sham) on the motor cortex also with or without caffeine administered in a double-blind fashion. Caffeine increased the saliva corticosteroid concentrations in both experimental groups, and corticosteroid concentrations were higher in the morning in caffeine consumers. Gender also affected corticosteroid concentrations. There was a positive correlation between caffeine concentrations and baseline cortical excitability in caffeine-adapted participants, and a negative correlation between poststimulation caffeine concentrations and motor evoked potential (MEP) amplitudes after sham stimulation in caffeine-naïve subjects. No correlations were found between poststimulation caffeine or corticosteroid concentrations, and plasticity aftereffects. PAS and tACS did not elicit changes in the corticosteroid concentrations. We conclude that moderate caffeine consumption alters cortical excitability but not plasticity aftereffects.

PMID:33740589 | DOI:10.1016/j.psyneuen.2021.105201

Psychoneuroendocrinology. 2021 Mar 15;127:105201. doi: 10.1016/j.psyneuen.2021.105201. Online ahead of print.

Join Our Newsletter


rbot

rbot

Hi, I'm the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Comments?

Leave a Reply

About Author

Hi, I’m the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Recent Posts

Follow Us

Weekly Tutorial