Measures of fNIRS in visuomotor learning.

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print

Measures of prefrontal functional near-infrared spectroscopy in visuomotor learning.

Abstract
Functional near-infrared spectroscopy (fNIRS) is a promising technique for non-invasively assessing cortical brain activity during learning. This technique is safe, portable, and, compared to other imaging techniques, relatively robust to head motion, ocular and muscular artifacts and environmental noise. Moreover, the spatial resolution of fNIRS is superior to electroencephalography (EEG), a more commonly applied technique for measuring brain activity non-invasively during learning. Outcomes from fNIRS measures during learning might therefore be both sensitive to learning and to feedback on learning, in a different way than EEG. However, few studies have examined fNIRS outcomes in learning and no study to date additionally examined the effects of feedback. To address this apparent gap in the literature, the current study examined prefrontal cortex activity measured through fNIRS during visuomotor learning and how this measure is affected by task feedback. Activity in the prefrontal cortex decreased over the course of learning while being unaffected by task feedback. The findings demonstrate that fNIRS in the prefrontal cortex is valuable for assessing visuomotor learning and that this measure is robust to task feedback. The current study highlights the potential of fNIRS in assessing learning even under different task feedback conditions.

PMID: 33528598 [PubMed – as supplied by publisher]

Exp Brain Res. 2021 Feb 02;:

Authors: Tinga AM, Clim MA, de Back TT, Louwerse MM

Join Our Newsletter


Mike

Mike

Comments?