Assessing brain oscillations during tACS

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print
tDCS vs tACS
Link -

Stimulation Artifact Source Separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS).

Brain oscillations, e.g. measured by electro- or magnetoencephalography (EEG/MEG), are causally linked to brain functions that are fundamental for perception, cognition and learning. Recent advances in neurotechnology provide means to non-invasively target these oscillations using frequency-tuned amplitude-modulated transcranial alternating current stimulation (AM-tACS). However, online adaptation of stimulation parameters to ongoing brain oscillations remains an unsolved problem due to stimulation artifacts that impede such adaptation, particularly at the target frequency. Here, we introduce a real-time compatible artifact rejection algorithm (Stimulation Artifact Source Separation, SASS) that overcomes this limitation. SASS is a spatial filter (linear projection) removing EEG signal components that are maximally different in the presence versus absence of stimulation. This enables the reliable removal of stimulation-specific signal components, while leaving physiological signal components unaffected. For validation of SASS, we evoked brain activity with known phase and amplitude using 10 Hz visual flickers across 7 healthy human volunteers. 64-channel EEG was recorded during and in absence of 10 Hz AM-tACS targeting the visual cortex. Phase differences between AM-tACS and the visual stimuli were randomized, so that steady-state visually evoked potentials (SSVEPs) were phase-locked to the visual stimuli but not to the AM-tACS signal. For validation, distributions of single-trial amplitude and phase of EEG signals recorded during and in absence of AM-tACS were compared for each participant. When no artifact rejection method was applied, AM-tACS stimulation artifacts impeded assessment of single-trial SSVEP amplitude and phase. Using SASS, amplitude and phase of single trials recorded during and in absence of AM-tACS were comparable. These results indicate that SASS can be used to establish adaptive (closed-loop) AM-tACS, a potentially powerful tool to target various brain functions, and to investigate how AM-tACS interacts with electric brain oscillations.

PMID: 33412281 [PubMed – as supplied by publisher]

Neuroimage. 2021 Jan 04;:117571

Authors: Haslacher D, Nasr K, Robinson SE, Braun C, Soekadar SR

Join Our Newsletter



Hi, I'm the Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.


Leave a Reply

About Author

Hi, I’m the Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Recent Posts

Follow Us

Weekly Tutorial