An fNIRS-Based Motor Imagery BCI for ALS: A Subject-Specific Data-Driven Approach.
Abstract
OBJECTIVE: Functional near-infrared spectroscopy (fNIRS) has recently gained momentum in research on motor-imagery (MI)-based brain-computer interfaces (BCIs). However, strikingly, most of the research effort is primarily devoted to enhancing fNIRS-based BCIs for healthy individuals. The ability of patients with amyotrophic lateral sclerosis (ALS), among the main BCI end-users to utilize fNIRS-based hemodynamic responses to efficiently control an MI-based BCI, has not yet been explored. This study aims to quantify subject-specific spatio-temporal characteristics of ALS patients’ hemodynamic responses to MI tasks, and to investigate the feasibility of using these responses as a means of communication to control a binary BCI.
METHODS: Hemodynamic responses were recorded using fNIRS from eight patients with ALS while performing MI-Rest tasks. The generalized linear model (GLM) analysis was conducted to statistically estimate and evaluate individualized spatial activation. Selected channel sets were statistically optimized for classification. Subject-specific discriminative features, including a proposed data-driven estimated coefficient obtained from GLM, and optimized classification parameters were identified and used to further evaluate the performance using a linear support vector machine (SVM) classifier.
RESULTS: Inter-subject variations were observed in spatio-temporal characteristics of patients’ hemodynamic responses. Using optimized classification parameters and feature sets, all subjects could successfully use their MI hemodynamic responses to control a BCI with an average classification accuracy of 85.4%±19.8%.
SIGNIFICANCE: Our results indicate a promising application of fNIRS-based MI hemodynamic responses to control a binary BCI by ALS patients. These findings highlight the importance of subject-specific data-driven approaches for identifying discriminative spatio-temporal characteristics for an optimized BCI performance.
PMID: 33206606 [PubMed – as supplied by publisher]
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov 18;PP:
Authors: Hosni SM, Borgheai SB, McLinden J, Shahriari Y