Cortical excitability changes following tDCS or tRNS

Comparative study of motor cortical excitability changes following anodal tDCS or high-frequency tRNS in relation to stimulation duration.

BACKGROUND: In this study, we investigate the capacity of two different non-invasive brain stimulation (NIBS) techniques (anodal transcranial direct current stimulation (anodal tDCS) and high-frequency transcranial random noise stimulation (hf-tRNS)) regarding the relationship between stimulation duration and their efficacy in inducing long-lasting changes in motor cortical excitability.
METHODS: Fifteen healthy subjects attended six experimental sessions (90 experiments in total) and underwent both anodal tDCS of 7, 13, and 20 min duration, as well as high-frequency 1mA-tRNS of 7, 13, and 20 min stimulation duration. Sessions were performed in a randomized order and subjects were blinded to the applied methods.
RESULTS: For anodal tDCS, no significant stable increases of motor cortical excitability were observed for either stimulation duration. In contrast, for hf -tRNS a stimulation duration of 7 min resulted in a significant increase of motor cortical excitability lasting from 20 to 60 min poststimulation. While an intermediate duration of 13 min hf-tRNS failed to induce lasting changes in motor cortical excitability, a longer stimulation duration of 20 min hf-tRNS led only to significant increases at 50 min poststimulation which did not outlast until 60 min poststimulation.
CONCLUSION: Hf-tRNS for a duration of 7 min induced robust increases of motor cortical excitability, suggesting an indirect proportional relationship between stimulation duration and efficacy. While hf-tRNS appeared superior to anodal tDCS in this study, further systematic and randomized experiments are necessary to evaluate the generalizability of our observations and to address current intensity as a further modifiable contributor to the variability of transcranial brain stimulation.

PMID: 32996722 [PubMed – in process]

Physiol Rep. 2020 Oct;8(19):e14595

Authors: Haeckert J, Lasser C, Pross B, Hasan A, Strube W




About Author

Recent Posts

Follow Us

Weekly Tutorial