Variability of Skull Conductivity in Head Models.

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print
Link -

Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models.

Abstract
Skull conductivity has a substantial influence on EEG and combined EEG and MEG source analysis as well as on optimized transcranial electric stimulation. To overcome the use of standard literature values, we propose a non-invasive two-level calibration procedure to estimate skull conductivity individually in a group study with twenty healthy adults. Our procedure requires only an additional run of combined somatosensory evoked potential and field data, which can be easily integrated in EEG/MEG experiments. The calibration procedure uses the P20/N20 topographies and subject-specific realistic head models from MRI. We investigate the inter-subject variability of skull conductivity and relate it to skull thickness, age and gender of the subjects, to the individual scalp P20/N20 surface distance between the P20 potential peak and the N20 potential trough as well as to the individual source depth of the P20/N20 source. We found a considerable inter-subject variability for (calibrated) skull conductivity (8.44 ± 4.84 mS/m) and skull thickness (5.97 ± 1.19 mm) with a statistically significant correlation between them (rho = 0.52). Age showed a statistically significant negative correlation with skull conductivity (rho = -0.5). Furthermore, P20/N20 surface distance and source depth showed large inter-subject variability of 12.08 ± 3.21 cm and 15.45 ± 4.54 mm, respectively, but there was no significant correlation between them. We also found no significant differences among gender subgroups for the investigated measures. It is thus important to take the inter-subject variability of skull conductivity and thickness into account by means of using subject-specific calibrated realistic head modeling.

PMID: 32919058 [PubMed – as supplied by publisher]

Neuroimage. 2020 Sep 09;:117353

Authors: Antonakakis M, Schrader S, Aydin Ü, Khan A, Gross J, Zervakis M, Rampp S, Wolters CH

Join Our Newsletter


rbot

rbot

Hi, I'm the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Comments?

Leave a Reply

About Author

Hi, I’m the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Recent Posts

Follow Us

Weekly Tutorial