Pain classified by machine learning using EEG features.

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print

Pain phenotypes classified by machine learning using electroencephalography features.

Abstract
Pain is a multidimensional experience mediated by distributed neural networks in the brain. To study this phenomenon, EEGs were collected from 20 subjects with chronic lumbar radiculopathy, 20 age and gender matched healthy subjects, and 17 subjects with chronic lumbar pain scheduled to receive an implanted spinal cord stimulator. Analysis of power spectral density, coherence, and phase-amplitude coupling using conventional statistics showed that there were no significant differences between the radiculopathy and control groups after correcting for multiple comparisons. However, analysis of transient spectral events showed that there were differences between these two groups in terms of the number, power, and frequency-span of events in a low gamma band. Finally, we trained a binary support vector machine to classify radiculopathy versus healthy subjects, as well as a 3-way classifier for subjects in the 3 groups. Both classifiers performed significantly better than chance, indicating that EEG features contain relevant information pertaining to sensory states, and may be used to help distinguish between pain states when other clinical signs are inconclusive.

PMID: 32871260 [PubMed – as supplied by publisher]

Neuroimage. 2020 Aug 29;:117256

Authors: Levitt J, Edhi MM, Thorpe RV, Leung JW, Michishita M, Koyama S, Yoshikawa S, Scarfo KA, Carayannopoulos AG, Gu W, Srivastava KH, Clark BA, Esteller R, Borton DA, Jones SR, Saab CY

Join Our Newsletter


Mike

Mike

Comments?