Machine Learning Techniques for Divergent Thinking EEG Data.

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print
creativity
Link -

Classifying Creativity: Applying Machine Learning Techniques to Divergent Thinking EEG Data.

Abstract
Prior research has shown that greater EEG alpha power (8-13 Hz) is characteristic of more creative individuals, and more creative task conditions. The present study investigated the potential for machine learning to classify more and less creative brain states. Participants completed an Alternate Uses Task, in which they thought of Normal or Uncommon (more creative) uses for everyday objects (e.g., brick). We hypothesized that alpha power would be greater for Uncommon (vs. Common) uses, and that a machine learning (ML) approach would enable the reliable classification data from the two conditions. Further, we expected that ML would be successful at classifying more (vs. less) creative individuals. As expected, alpha power was significantly greater for the Uncommon than for the Normal condition. Using spectrally weighted common spatial patterns to extract EEG features, and quadratic discriminant analysis, we found that classification accuracy for the two conditions varied widely among individuals, with a mean of 63.9%. For more vs. less creative individuals, 82.3% classification accuracy was attained. These findings indicate the potential for broader adoption of machine learning in creativity research.

PMID: 32474083 [PubMed – as supplied by publisher]

Neuroimage. 2020 May 28;:116990

Authors: Stevens CE, Zabelina DL

Join Our Newsletter


rbot

rbot

Hi, I'm the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Comments?

Leave a Reply

About Author

Hi, I’m the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Recent Posts

Follow Us

Weekly Tutorial