An EEG-fNIRS Hybridization Technique

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print
Link -

An EEG-fNIRS Hybridization Technique in the Four-Class Classification of Alzheimer’s Disease.

J Neurosci Methods. 2020 Feb 08;:108618

Authors: Cicalese PA, Li R, Ahmadi MB, Wang C, Francis JT, Selvaraj S, Schulz PE, Zhang Y

Abstract
BACKGROUND: Alzheimer’s disease (AD) is projected to become one of the most expensive diseases in modern history, and yet diagnostic uncertainties exist that can only be confirmed by postmortem brain examination. Machine Learning (ML) algorithms have been proposed as a feasible alternative to the diagnosis of several neurological diseases and disorders, such as AD. An ideal ML-derived diagnosis should be inexpensive and noninvasive while retaining the accuracy and versatility that make ML techniques desirable for medical applications.
NEW METHODS: Two portable modalities, Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) have been widely employed in constructing hybrid classification models to compensate for each other’s weaknesses. In this study, we present a hybrid EEG-fNIRS model for classifying four classes of subjects including one healthy control (HC) group, one mild cognitive impairment (MCI) group, and, two AD patient groups. A concurrent EEG-fNIRS setup was used to record data from 29 subjects during a random digit encoding-retrieval task. EEG-derived and fNIRS-derived features were sorted using a Pearson correlation coefficient-based feature selection (PCCFS) strategy and then fed into a linear discriminant analysis (LDA) classifier to evaluate their performance.
RESULTS: The hybrid EEG-fNIRS feature set was able to achieve a higher accuracy (79.31%) by integrating their complementary properties, compared to using EEG (65.52%) or fNIRS alone (58.62%). Moreover, our results indicate that the right prefrontal and left parietal regions are associated with the progression of AD.
COMPARISON WITH EXISTING METHODS: Our hybrid and portable system provided enhanced classification performance in multi-class classification of AD population.
CONCLUSIONS: These findings suggest that hybrid EEG-fNIRS systems are a promising tool that may enhance the AD diagnosis and assessment process.

PMID: 32045572 [PubMed – as supplied by publisher]

Join Our Newsletter


rbot

rbot

Hi, I'm the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Comments?

Leave a Reply

About Author

Hi, I’m the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Recent Posts

Follow Us

Weekly Tutorial