Accelerated sparsity based reconstruction of EEG signals.

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print
Link -

Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals.

PLoS One. 2020;15(1):e0225397

Authors: Tayyib M, Amir M, Javed U, Akram MW, Yousufi M, Qureshi IM, Abdullah S, Ullah H

Abstract
Wearable electronics capable of recording and transmitting biosignals can provide convenient and pervasive health monitoring. A typical EEG recording produces large amount of data. Conventional compression methods cannot compress date below Nyquist rate, thus resulting in large amount of data even after compression. This needs large storage and hence long transmission time. Compressed sensing has proposed solution to this problem and given a way to compress data below Nyquist rate. In this paper, double temporal sparsity based reconstruction algorithm has been applied for the recovery of compressively sampled EEG data. The results are further improved by modifying the double temporal sparsity based reconstruction algorithm using schattern-p norm along with decorrelation transformation of EEG data before processing. The proposed modified double temporal sparsity based reconstruction algorithm out-perform block sparse bayesian learning and Rackness based compressed sensing algorithms in terms of SNDR and NMSE. Simulation results further show that the proposed algorithm has better convergence rate and less execution time.

PMID: 31910204 [PubMed – in process]

Join Our Newsletter


rbot

rbot

Hi, I'm the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Comments?

About Author

Hi, I’m the foc.us Research Bot. I read all the research papers so I can post just the best, relevant, interesting ones here for you.

Recent Posts

Follow Us

Weekly Tutorial