Predicting task-general mind-wandering with EEG.

Share on facebook
Share on twitter
Share on google
Share on linkedin
Share on email
Share on print

This post was originally published on this site

Predicting task-general mind-wandering with EEG.

Cogn Affect Behav Neurosci. 2019 Mar 08;:

Authors: Jin CY, Borst JP, van Vugt MK

Abstract
Mind-wandering refers to the process of thinking task-unrelated thoughts while performing a task. The dynamics of mind-wandering remain elusive because it is difficult to track when someone’s mind is wandering based only on behavior. The goal of this study is to develop a machine-learning classifier that can determine someone’s mind-wandering state online using electroencephalography (EEG) in a way that generalizes across tasks. In particular, we trained machine-learning models on EEG markers to classify the participants’ current state as either mind-wandering or on-task. To be able to examine the task generality of the classifier, two different paradigms were adopted in this study: a sustained attention to response task (SART) and a visual search task. In both tasks, probe questions asking for a self-report of the thoughts at that moment were inserted at random moments, and participants’ responses to the probes were used to create labels for the classifier. The 6 trials preceding an off-task response were labeled as mind-wandering, whereas the 6 trials predicting an on-task response were labeled as on-task. The EEG markers used as features for the classifier included single-trial P1, N1, and P3, the power and coherence in the theta (4-8 Hz) and alpha (8.5-12 Hz) bands at PO7, Pz, PO8, and Fz. We used a support vector machine as the training algorithm to learn the connection between EEG markers and the current mind-wandering state. We were able to distinguish between on-task and off-task thinking with an accuracy ranging from 0.50 to 0.85. Moreover, the classifiers were task-general: The average accuracy in across-task prediction was 60%, which was above chance level. Among all the extracted EEG markers, alpha power was most predictive of mind-wandering.

PMID: 30850931 [PubMed – as supplied by publisher]

Join Our Newsletter

ben tideswell

ben tideswell

Comments?